Macrophage differentiation and polarization on a decellularized pericardial biomaterial.

نویسندگان

  • Marianne B Ariganello
  • Dan T Simionescu
  • Rosalind S Labow
  • J Michael Lee
چکیده

The monocyte-derived macrophage (MDM), present at biomaterial implantations, can increase, decrease or redirect the inflammatory and subsequent wound healing process associated with the presence of a biomaterial. Understanding MDM responses to biomaterials is important for improved prediction and design of biomaterials for tissue engineering. This study analyzed the direct differentiation of monocytes on intact, native collagen. Human monocytes were differentiated on decellularized bovine pericardium (DBP), polydimethylsiloxane (PDMS) or polystyrene (TCPS) for 14 d. MDMs on all surfaces released high amounts of MMP-9 compared to MMP-2 and relatively little MMP-1. MDMs differentiated on DBP released more MMP-2, but less acid phosphatase activity. MDMs on all three surfaces released low amounts of cytokines, although substrate differences were found: MDMs on DBP released higher amounts of IL-6, IL-8, and MCP-1 but lower amounts of IL-10 and IL-1ra. This research provides evidence that MDMs on decellularized matrices may not be stimulated towards an activated, inflammatory phenotype, supporting the potential of decellularized matrices for tissue engineering. This study also demonstrated that the differentiation surface affects MDM phenotype and therefore study design of macrophage interactions with biomaterials should scrutinize the specific macrophage culture method utilized and its effects on macrophage phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human tissue-biomaterial interface: a role for PPARγ-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype.

In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implante...

متن کامل

Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions

Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet.  The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...

متن کامل

Hepcidin Induces M1 Macrophage Polarization in Monocytes or THP-1 Derived Macrophages

Background: Macrophage polarization plays a critical role in determining the inflammatory states. Hepcidin is a key negative regulator of iron homeostasis and functions. Although hepcidin has been shown to affect ferroportin expression in macrophages, whether it affects macrophage polarization is still largely unknown. Objective: To address whether hepcidin ind...

متن کامل

Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellula...

متن کامل

Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors.

Decellularized whole organs represent ideal scaffolds for engineering new organs and/or cell transplantation. Here, we investigate whether decellularized liver scaffolds provide cell-friendly biocompatible three-dimensional (3-D) environment to support the proliferation and differentiation of hepatic progenitor cells. Mouse liver tissues are efficiently decellularized through portal vein perfus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2011